Features of cardiomyocyte proliferation and its potential for cardiac regeneration
نویسندگان
چکیده
The human heart does not regenerate. Instead, following injury, human hearts scar. The loss of contractile tissue contributes significantly to morbidity and mortality. In contrast to humans, zebrafish and newts faithfully regenerate their hearts. Interestingly, regeneration is in both cases based on cardiomyocyte proliferation. In addition, mammalian cardiomyocytes proliferate during foetal development. Their proliferation reaches its maximum around chamber formation, stops shortly after birth, and subsequent heart growth is mostly achieved by an increase in cardiomyocyte size (hypertrophy). The underlying mechanisms that regulate cell cycle arrest and the switch from proliferation to hypertrophy are unclear. In this review, we highlight features of dividing cardiomyocytes, summarize the attempts to induce mammalian cardiomyocyte proliferation, critically discuss methods commonly used for its detection, and explore the potential and problems of inducing cardiomyocyte proliferation to improve function in diseased hearts.
منابع مشابه
P-74: Effect of Fndc5 Overexpression onCardiac Differentiation Rate of mESCs
Background: Fibronectin type III domain-containing 5 proteins (Fndc5), an exercise hormone, formerly known as peroxisomal protein that was cloned in 2002. Transcript profile analysis of Fndc5 revealed high degree of expression in heart, skeletal muscle and brain. Our recent studies indicated a significant increase (approximately 10 folds) in mRNA level of Fndc5 when mouse embryonic stem cells w...
متن کاملCALL FOR PAPERS Cardiac Regeneration and Repair: Mechanisms and Therapy Cardiomyocyte proliferation in cardiac development and regeneration: a guide to methodologies and interpretations
Leone M, Magadum A, Engel FB. Cardiomyocyte proliferation in cardiac development and regeneration: a guide to methodologies and interpretations. Am J Physiol Heart Circ Physiol 309: H1237–H1250, 2015. First published September 4, 2015; doi:10.1152/ajpheart.00559.2015.—The newt and the zebrafish have the ability to regenerate many of their tissues and organs including the heart. Thus, a major go...
متن کاملCardiac regeneration based on mechanisms of cardiomyocyte proliferation and differentiation.
Cardiomyocyte proliferation and progenitor differentiation are endogenous mechanisms of myocardial development. Cardiomyocytes continue to proliferate in mammals for part of post-natal development. In adult mammals under homeostatic conditions, cardiomyocytes proliferate at an extremely low rate. Because the mechanisms of cardiomyocyte generation provide potential targets for stimulating myocar...
متن کاملTelomerase Is Essential for Zebrafish Heart Regeneration
After myocardial infarction in humans, lost cardiomyocytes are replaced by an irreversible fibrotic scar. In contrast, zebrafish hearts efficiently regenerate after injury. Complete regeneration of the zebrafish heart is driven by the strong proliferation response of its cardiomyocytes to injury. Here we show that, after cardiac injury in zebrafish, telomerase becomes hyperactivated, and telome...
متن کاملCardiomyocyte proliferation in cardiac development and regeneration: a guide to methodologies and interpretations.
The newt and the zebrafish have the ability to regenerate many of their tissues and organs including the heart. Thus, a major goal in experimental medicine is to elucidate the molecular mechanisms underlying the regenerative capacity of these species. A wide variety of experiments have demonstrated that naturally occurring heart regeneration relies on cardiomyocyte proliferation. Thus, major ef...
متن کامل